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QUESTION OF THE MOVEMENT OF WATER IN CONCRETE WHEN 

IT FREEZES 

F. M. Krantov and A. G. Shlaen UDC 691.32:532.5 

We determine the dimensions of capillaries capable of removing the excess water 
from a freezing pore when there are no destructive processes taking place. 

Cement concrete is a capillary-porous solid. In the overall volume of its porosity we 
generally distinguish two main types of pores and capillaries: cement-gel pores, whose radii 
vary from 2. 10 -9 to 2" i0 -e m, and capillaries, which have a radius greater than 10 -7 m [i]. 
The relation between these types of porosity and the distribution of pores along the radii 
depends on a number of technological factors and is determined mainly by the composition of 
the concrete: by the amount of water used and the water-to-cement ratio (w/c). When the 
concrete freezes, the water in the pores of the gel does not freeze above 233~ [i, 2], but 
in the capillary pores it freezes at higher temperatures; as a result of the increase in its 
specific volume, in this phase transition, excess pressures arise in the pore system of the 
concrete. The stresses in the structure of the concrete which result from these pressures 
may lead to its failure. The capability of withstanding a specified number of cycles of al- 
ternating freezing and thawing while its loss of strength remains within a prescribed limit 
is called the frost resistance of the water-saturated concrete. The introduction of air- 
entraining or gas-producing additives into the concrete mix creates in the concrete closed 
air bubbles with radii of 5" 10-s-2 �9 i0 -~ m, which are surrounded by the cement gel, do not 
fill up with water under ordinary conditions, and are connected to the general capillary- 
porous structure by the pores in the gel [3]. It is known that such bubbles in the concrete 
help to increase its frost resistance [2, 3]. The greater the number of bubbles and the 
smaller the distances between them, the greater will be the increase in the frost resistance 
of the concrete [1-3]. Most investigators -- e.g., [1-3] -- attribute this to the fact that 
the air bubbles are compensating volumes into which the excess water can go when the water 
freezes in the capillaries. 

Figure 1 shows a simplified scheme of the structure under consideration. A water- 
filled cylindrical pore of radius Rp and length ~_ is closed at the bottom and surrounded 
by cement stone containing air bubbles connected with the pore by water-filled capillaries. 
The connecting capillaries are represented by straight cylindrical channels with an orienta- 
tion perpendicular to the surface of the filled pore and having an average length and vari- 
able radius r i. In the freezing process the heat is removed from the upper part of the speci- 
men. 

If the time required for the freezing of the water in the pore is much longer than the 
time required to stabilize the freezing rate [4], we can assume that the plane crystalliza- 
tion front moves along the pore axis at constant velocity v s . The thermal conductivity of 
the mass surrounding the pore is disregarded, since the supercooling of the water is enough 
to absorb the heat that is generated. In this case the value of Q, the volumetric flow rate 
of the water from the water-filled pore, required to prevent an intensive increase in pres- 
sure is determined as follows: 
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f7-~7 
Fig. i. Scheme of the structure: i) wa- 
ter-filled cylindrical pore; 2) surround- 
ing medium containing air pores and con- 
necting capillaries; 3) air pores (for 
convenience, we have shown only two); 4) 
connecting capillaries. 

Q=SpVs ( P:w--Ps ). 
Pw 

(1) 

Starting from the dimensions of the pores and capillaries in the concrete [1-3] and also 
from the results of the investigations in [5], the movement of water in the connecting capil- 
laries can be considered laminar and inertialess, and the pressure gradient can be determined 
by the action of the viscous forces alone. At each instant of time the pressure along the 
entire length of the water-filled pore is the same. The counter-pressure at the capillary 
outlets is also considered constant. Then the movement of the water in the connecting capil- 
lary is Poiseuille flow, and the flow rate in the capillary [6] is 

~r ~ dP (2) 
Q-i= 8~t dlc ' 

where dP/dl c is the pressure gradient in a capillary of minimum radius, forming the pressure 
in the pore at each instant of time. 

The flow rate of the water through the surface of the pore Sp, which varies with time t, 
will be the following when the water freezes: 

~ ; n  (3) Q = ~ ~Q~, 
i 

where n i is the number of capillaries of a given radius. 

Since the length of the capillaries surrounding the pore is small, the porosity can be 
defined approximately as the ratio of the area of the cross sections of these capillaries 
to the surface area of the pore, ~ ~ri/S. Then 

SH~ 
hi---- str2 , (4) 

S = ~ [R2p + Rp (Ip - -  vst)l. (5)  

A f t e r  s u b s t i t u t i n g  ( 2 ) ,  ( 4 ) ,  and ~5) i n t o  ( 3 ) ,  we o b t a i n  

Equating (1) to (6) yields an expression for the pressure gradient in the capillary of 
minimal radius, forming the pressure in the pore: 

2 J d___~P _--, , 8~RpJ.,s (Pw-- fls) 

dlo OwtR ~ + Rp(Ip--Vst)l ~r2rI, 
i 

This expression was obtained for the case in which all of the excess water passes 
through the surface of the pore in unit time, and there is no change in the pore volume (no 
deformation of the pore) resulting from the pressure. In addition, the counterpressure due 
to the compression of the air in the air pore may be disregarded. This latter assumption is 
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permissible, because the volumes of the water-saturated and the air-filled pores are approxi- 
mately equal, and the water displaced does not exceed 10% of the volume, so that the increase 
in pressure due to the compression of the air is negligible in comparison with the pressure 
required to overcome the viscous forces. 

After integrating along the length of the capillary, we find that the excess pressure 
for the case of Poiseuille flow is equal to 

p~ = 8~R~s (Pp-- P,-s) le 

From the expression obtained above it can be seen that the pressure in the pore increa- 
ses with time. When t = 0, there is no excess pressure, since v s = 0. Using the total time 
of the process tma x = Ip/Vs, we can determine the maximum value of the pressure in the pore: 

Plmax = 8~vs(pw--Ps)/c  .,~ . ( 7 )  
Pw r~ Hi 

Since in actuality the movement of the liquid in the capillary is accelerated, we find that 
the excess pressure causing the acceleration is P2i = Pw v~, where v i is the velocity of the 

water in the capillary. From (2) it follows that v i = r~ P:/Sp~ k. 

The total water pressure in the pore that is required to ensure a given flow rate is 
P = P~ + P2. Here P~ and P2 are the excess pressure values required to overcome the viscous- 
friction forces and to produce the acceleration of the liquid, respectively. However, for 
the given flow rates, P2 is negligibly small, so that P = P:. The maximum pressure in the 
pore is independent of the pore length and radius (7). 

Considering the cement stone surrounding the pore shown in Fig. 1 in the form of an 
annular layer of thickness Ic, we can estimate (the estimate is somewhat high) the maximum 
stresses in it that are caused by the increase of pressure in the pore, using the expression 
for the definition of the maximum equivalent stress in a thick-walled cylindrical shell [7]. 
Since l^ >> R , it follows that ot = 2Pmax. The material surrounding the pore will withstand 
the res~itingPpressure if the stresses caused by the pressure do not exceed the tensile 
strength of the material. 

On the basis of the expressions obtained, we carry out the calculation for the cement 
stone, some properties and parameters of whose structure can be taken from [1-3]: for w/c = 
0.4, 0.6, and 0.8, the compressive ultimate strength will be ~bco = 20-45 MPa; the tensile 

ultimate strength will be Obt =3.0-5.0 Mpa;Rp =i0 -s, 10 -6 , 10 -7 m; ~p =8RD; the total porosity 
of the cement stone for the indicated w/c values and a degree ofhydration equal to 
0.6 will be 0.3, 0.45, and 0.55, respectively, and the porosity resulting from the capillar- 
ies with radii of 10 -5 to 10 -7 m is equal to 0.138, 0.326, and 0.444; Ic = 0,15. 10 -3 m. 

In the case of cement stone without appropriate additives forming air or gas bubbles, 
at the minimum considered value of w/c = 0.4, the frost resistance does not exceed 150 cycles 
and decreases as w/c increases. 

The possible initial supercooling of the water upon freezing is 5~ [8]. On the basis 
of the calculation of the rate of motion of the crystallization front from [4, 9] and the 
data of [i0], we take v s = 0.15 m/see. The determination of the time required for stabili- 
zation of the rate of freezing [4] showed that its value is much smaller (by one order of 
magnitude) than the time for the entire process. 

Variational calculation of the possible maximum pressure in the pore according to the 
expression (7) was carried out for different radii of the capillaries ri, according to the 
indicated porosity. The smallest possible dimension of the capillary forming the pressure 
in the pore which does not cause stresses exceeding the ultimate strength was found to be 
r = 2.8" 10 -7 m, where Pmax~2.5 MPa. At these pressures the anomalous phenomena noted in 
[II] will not take place in our case. The flow rate for the capillaries of the smallest 
radius will be insignificantly small at this pressure. Comparing the necessary pressure 
gradients from Poiseuille's law for capillaries with r = 5. i0 -~ and r = 2.8' 10 -7 m. we can 
conclude that at a pressure of 2.5 MPa in the pore, smaller capillaries, in spite of the 
fact that there are more of them, carry no more than 1% of the given flow rate. Moreover, 
the anomalous behavior of the water in capillaries with radius r < 10 -8 m, caused by the 
surface tension from the capillary walls [ii], reduces the flow rate even further. 
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Our analysis shows that the necessary removal of water from the freezing pore can be en- 
sured only by capillaries of large radius (r~2.8' 10 -7 m) for a porosity ~0.138 result- 
ing from them. Since the air bubbles are connected with the general capillary--pore struc- 
ture of the cement rock by capillaries of much smaller radius, the freezing of the water in 
the filled capillary pores must result in the development of a destructive process associated 
with the breakdown of the pore walls, because the water freezes in the large connecting capil- 
laries as well. The fact that the air bubbles surrounded by the nonfreezing capillaries of 
the cement gel have a positive effect on the frost resistance of the concrete is due to a 
different mechanism, not to the forcing out of the excess water when it freezes. Probably, 
this positive effect is manifested because the air bubbles introduced into the concrete in- 
crease its microcrack resistance, i.e., reduce the length of the cracks that arise as a re- 
sult of the destruction and prevent them from developing further, and in addition they in- 
crease the limiting tensility of the system. 

NOTATION 

Q, flow rate; p, density; S, area of cross section and lateral surface of a pore; R, 2, 
radii; t, time; v, velocity; P, pressure; ~ length; o, stress; n, number of capillaries; ~, 
dynamic viscosity or water; N, porosity. Subscripts: w, liquid phase of water; s, solid 
phase of water (ice); i, indication for one of a set of quantities; c, capillary; p, pore, 
cross section; co, compression; t, tension; b, ultimate strength. 
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